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flavor eigenstates

m22 - m12 = (7.5 ± 0.2) 10-5 eV2

|m32 - m22| = (2.32     ) 10-3 eV2+ 0.12
- 0.08

(solar neutrino oscillations)

(atmospheric neutrino oscillations)

oscillation data gives mass splittings
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Neutrinos
𝝼electron

𝝼muon

𝝼tau

but the absolute masses are unknown!

flavor eigenstates

m
as

s

?
𝜈1 ≈ 0eV
𝜈2 ≈ 0.009eV
𝜈3 ≈ 0.049eV

𝜈3 ≈ 0eV

𝜈2 ≈ 0.049eV
𝜈1 ≈ 0.047eV

𝜈1 ≈ 𝜈2 ≈ 𝜈3

``Normal” ``Inverted” ``Degenerate”

𝝼1

𝝼3

𝝼2

Pontecorvo 1957, 1958, 1967; Maki, Nakagawa, Sakata 1962
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Neutrino knowns and unknowns
m
as

s

? 𝜈i ≳ 0.05eV

Absolute scale, hierarchy

``Normal” ``Inverted” ``Degenerate”

Tritium β decay:  m𝞶e ≲ 2eV-

lower bound on mass

from oscillation data

upper bound on mass

cosmology: ∑ m𝞶i ≲ 0.2-0.6eV
upper bound on mass

(Troitsk experiment 2011)

(Planck CMB + BAO 2013)
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Neutrino knowns and unknowns

• Where do neutrino masses come from?

• What is the absolute mass scale?

• Are there additional sterile neutrinos?

• Can neutrinos generate matter-antimatter 
asymmetry of the universe?

Big Questions

Astrophysics has previously informed neutrino physics! 
(solar neutrino problem ⟹ neutrino oscillations)
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The gravitational evolution of large-scale structure is 
different for fast and slow moving particles 

(clump easily) (don’t clump easily)

baryons and cold dark 
matter

neutrinos (or other 
exotic light dark 

matter)

Massive neutrinos and linear structure growth
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perturbation 
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Massive neutrinos and linear structure growth

𝝳𝞀c
𝞀c

cold dark 
matter, 

baryons and  
neutrinos 
growing 

together

𝝳𝞀𝞶
𝞀𝞶
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time

small-scale density 
perturbations don’t retain 

neutrinos 
large-scale density 
perturbations do 
retain neutrinos

“free-streaming scale”

Massive neutrinos and linear structure growth

Relevant scale:

!

Typical distance a 
neutrino can travel 
in a Hubble time


 λfs ~ u𝞶/H

Growth of matter 
perturbations is scale-

dependent
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∑i m𝞶i (eV)
0.0 0.4 0.8 1.2 1.6 2.0
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0.6

0.8

1.0

Scale-dependent growth

cosmological constraints!

Hu, Eisenstein, Tegmark 1998
Bond, Efstathiou, Silk 1980
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Some observable consequences:

Suppressed matter power spectrum (test via 
lensing, galaxy power spectra)

Fewer massive halos hosting galaxy clusters
!

(But neutrino halos eventually accumulate 
around the cold dark matter halos!)!

Scale-dependent halo bias new!

So, massive neutrinos change the amplitude and 
growth rate of matter perturbations below the 

neutrino free-streaming scale

(ML 2014)

(ML & Zaldarriaga 2013)

(ML 2014)
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i.e. gravitationally 
bound blobs of 
dark matter 

where galaxies 
and clusters of 
galaxies live

(these nodes are cold dark matter halos)
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halos are biased 
tracers of the matter 

density field

the number density 
of halos is modulated 
by long-wavelength 
fluctuations in the 
matter density field

≣ b
𝝳n 
n 

𝝳𝞀 
𝞀 

long-wavelength

b is the halo bias

Scale-dependent bias — main idea:
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In a universe with CDM only, the linear evolution of matter 
fluctuations is independent of their wavelength

halos can’t tell the wavelength of the background matter density 
perturbation

the effect of    on the halo field (the linear bias) is independent of k𝝳𝞀
𝞀
_

massive neutrinos break this 
halo bias can depend on k

Scale-dependent bias — main idea:
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the halo bias caused by massive 
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WANT: estimate of k-dependence of 
the halo bias caused by massive 

neutrinos

in
cr

ea
sin

g 
ti
m
e

( see also Hui & Parfrey 2008; Parfrey, Hui, Sheth 2011;)

neutrinos
cold dark matter

halos

Scale-dependent bias — main idea:
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The scale-dependent growth of 
density perturbations causes halo 

bias to be scale dependent

𝝳n 
n (k) 𝝳𝞀m 

𝞀m
(k) = b 𝝳n 

n (k) 𝝳𝞀m 
𝞀m

(k) = b(k)

Scale-dependent bias
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initial density field

(ML 2014)
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Prescription for calculating the halo bias 

Gunn & Gott 1972
Press & Schechter 1974

initial proto-halo distributioninitial density field

≣ b
𝝳n 
n 

𝝳𝞀 
𝞀 

long-wavelength

(ML 2014)

want this!

late time halo distribution

Scale-dependent bias



Prescription for calculating the halo bias 
initial proto-halo distributioninitial density field

(ML 2014)

(i) In this step, the scale-dependent evolution of density 
perturbations causes

𝝳nLagrangian
n

𝝳𝞀cdm
𝞀cdm= bLagrangian(k) (k)(k)

Scale-dependent bias



Prescription for calculating the halo bias 
initial proto-halo distribution

(ML 2014)

late time halo distribution

(ii) In this step, the free 
streaming of neutrinos causes

= (1 + bLagrangian(k))

b(k) = ⟨𝝳n(k)𝝳m(k)⟩ 
⟨𝝳m(k)𝝳m(k)⟩ 

⟨𝝳cdm(k)𝝳m(k)⟩ 
⟨𝝳m(k)𝝳m(k)⟩ 
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Prescription for calculating the halo bias 
initial proto-halo distribution

(ML 2014)

late time halo distribution

(ii) In this step, the free 
streaming of neutrinos causes

= (1 + bLagrangian(k))

b(k) = ⟨𝝳n(k)𝝳m(k)⟩ 
⟨𝝳m(k)𝝳m(k)⟩ 

⟨𝝳cdm(k)𝝳m(k)⟩ 
⟨𝝳m(k)𝝳m(k)⟩ 

(i.e. halos trace CDM —> bias 
w.r.t total matter is scale-

dependent)

Villaescusa-Navarro, Marulli, Viel, Branchini, Castorina 2013

 Castorina, Sefusatti, Sheth, Villaescusa-Navarrow, Viel 2014


Biagetti,  Desjacques, Kehagias, Riotto 2014

see also

Scale-dependent bias
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𝝳crit 

Numerical results for halo bias

Scale-dependent changes to 𝝳crit

__∂𝝳crit
∂𝝳cdm(k)

wavenumber k (Mpc-1)

(ML 2014)

𝝳crit = 𝝳crit - 𝝳cdm(k)

Scale-dependent bias



Numerical results for halo bias

wavenumber k (Mpc-1)

𝝳n(k) = ∂n∂𝝳crit
__ 𝝳cdm(k)∂𝝳crit

∂𝝳cdm(k)
__scale-dependent 

change to

(ML 2014)

(Use Bhattacharya 
et al 2011 for 

n(M| 𝝳crit)

Scale-dependent bias



Numerical results for halo bias

wavenumber k (Mpc-1)

𝝳n(k) = ∂n∂𝝳crit
__ 𝝳cdm(k)∂𝝳crit

∂𝝳cdm(k)
__scale-dependent 

change to

tiny step-
like feature 
near the 
neutrino 
free-

streaming 
scale

(ML 2014)
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(Use Bhattacharya 
et al 2011 for 

n(M| 𝝳crit)
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Numerical results for halo bias

𝝳n(k)/n = b(k) 𝝳matter(k) scale-dependent change 
to final bias

wavenumber k (Mpc-1)fr
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(ML 2014)

(Use Bhattacharya 
et al 2011 for 

n(M| 𝝳crit)

b(
k)

 =
 √

P h
h(k

)/
P m

m
(k

)

Scale-dependent bias
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Numerical results for halo bias

𝝳n(k)/n = b(k) 𝝳matter(k) scale-dependent change 
to final bias

(ML 2014)

(Use Bhattacharya 
et al 2011 for 

n(M| 𝝳crit)
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Numerical results for halo bias

𝝳n(k)/n = b(k) 𝝳matter(k) scale-dependent change 
to final bias

(ML 2014)
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Observational consequences of scale 
dependent bias?

suppression in 
galaxy power 
spectrum less 
than in matter 
power spectrum

k (wave number )

matter power spectrum, or (incorrectly) assuming constant bias

(ML 2014)



But the scale-dependent halo bias is 
itself an observable!
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The scale-dependent halo bias is an 
observable!
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Fewer massive halos  
from massive neutrinos



Fewer massive halos
mass that collapses into halosinitial density field



mass that collapses into halosinitial density field
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Fewer large-amplitude density 
fluctuations
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using Bhattacharya et al fitting formula for n(M) with our 𝝳crit 

halo mass M (h-1Msun)
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ML 2014

Fewer massive halos

Many fewer massive halos 
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Neutrinos accrete onto 
these cold dark matter 

halos 



Neutrino Accretion

ML & Zaldarriaga 2013
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shown are m𝞶 = 0.05eV neutrinos 

around M = 1014 Msun halo

see also Ringwald & Wong 2004; Brandbyge, Hannestad, Haugboelle, Wong 2010
Villaescusa-Navarro, Bird, Pena-Garay, Viel 2013 ML & Zaldarriaga 2013



Neutrino Accretion
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velocity (km/s)

low velocity 
neutrinos end 
up bound in 

halos
shown are m𝞶 = 0.05eV neutrinos 

around M = 1014 Msun halo

the accreted neutrino 
halo is puffy in 

comparison with the 
CDM!

see also Ringwald & Wong 2004; Brandbyge, Hannestad, Haugboelle, Wong 2010
Villaescusa-Navarro, Bird, Pena-Garay, Viel 2013 ML & Zaldarriaga 2013



Neutrino Accretion

fraction that’s bound to the halo

halo mass (Msun) halo mass (Msun)
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108
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10%
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ML & Zaldarriaga 2013



Neutrino Effects in Large-scale Structure

less power in small-scale density fluctuations

fewer massive halos 

scale-dependent halo bias
puffy neutrino halos around CDM halos



Accuracy of these predictions?

Simulations with massive neutrinos? 

Viel, Haehnelt, Springel 2010; Marulli, Carbone, Viel, Moscardini, Cimatti 2011; Agarwal & Feldman 2011; Brandbyge, Hannestad, 
Haugboelle, Wong 2012; Upadhye, Biswas, Pope, Heitmann, Habib 2013: Villaescusa-Navarro, Bird, Pena-Garay, Viel 2013; 

N-body simulations are the community standard 
for cold dark matter structure. 

(i) Tricky. very few exist, very new

(ii) Want a model that provides insight into the 
physical processes responsible for new effects

(iii) Don’t want to rerun for every possible neutrino 
mass hierarchy scenario 

(iv) It will be great to make comparisons in the 
future!



(ML 2014)
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Figure 6. Halo bias as a function of scale determined from the simulation Set A for halos with M >
2⇥1013 h�1 M�. Left panels show the measurements of linear bias b(hh)c (continuous curves) and b(hh)m (dashed

curves) from the halo power spectrum Phh(k). Right panels show b(hc)c (continuous curves) and b(hm)
m (dashed

curves) respectively from the Phc and Phm cross-power spectra. Top left panels correspond to z = 0, bottom
panels to z = 0.5. The continuous and dotted horizontal lines show the constant bias values determined from
measurements of bc and bm, respectively, at k = 0.07hMpc�1, shown in turn as a vertical gray line in all
panels. Error bars show the uncertainty on mean over the eight realizations.

curves) defined in eqs. (5.3) and (5.5) in terms of cross-power spectra. Top row shows the results at
z = 0, bottom row at z = 0.5. To guide the eye, the continuous and dashed horizontal lines show the
values of b

c

(k) and b

m

(k) at k = 0.07hMpc�1 (shown as a vertical line): below this value of k, the
bias is observed to be constant for most measurements. This value also defines the bias values we use
for the study of bias as a function of ⌫ later in figure 9.

The fixed mass threshold clearly results in di↵erent bias values for the three models. This is a
consequence of the fact that the same mass threshold corresponds to quite di↵erent number counts
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Conclusions
Cosmology provides interesting information 
about neutrinos!


Scale-dependent halo bias is a new signal of 
massive neutrinos in large-scale structure


Scale-dependent halo bias is a new systematic 
for massive neutrinos in large-scale structure


Neutrinos decrease abundance of halos — Need 
to be careful with predictions for m𝛎 ≥ 0.3eV!


Eventually neutrinos accrete onto very massive 
halos!



